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Thermodynamic stability of periodic and quasiperiodic crystals
within a van der Waals approximation

R. Achrayah and M. Baus
Facultédes Sciences, Universite´ Libre de Bruxelles, Case Postale 231, B-1050 Bruxelles, Belgium

~Received 3 September 1997; revised manuscript received 3 December 1997!

We investigate the relation between the thermodynamic stability of periodic and quasiperiodic crystals and
the characteristics of the interaction potential within a simple van der Waals approximation to the free energy
of a one-component two-dimensional system. We find that thermodynamically stable quasiperiodic crystals can
be found only when the interaction potential has at least two negative minima separated by a positive maxi-
mum. @S1063-651X~98!00904-0#

PACS number~s!: 05.70.Fh, 61.44.Br, 64.70.Kb
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I. INTRODUCTION

At present the existence and nature of quasiperiodic c
tals~quasicrystals! is already well documented@1#. The ques-
tion of whether these quasicrystals are thermodynamic
stable or metastable structures, however, has received
flicting answers@2#. The difficulty of this problem is related
to the fact that most of the existing quasicrystals are meta
alloys and hence involve several atomic species betw
which complex effective potentials or pseudopotentials
operating. In principle, such a quasiperiodic structure can
stabilized by either entropic or energetic effects or by
interplay between both. In the case of entropic stabilizat
the alloy aspect is probably the dominant feature, wher
for energetic stabilization the particular features of the~in-
termetallic! potentials will dominate. In order to simplify th
problem we focus our attention here mainly on the energ
stabilization mechanism. Although experimentally less re
istic, this simplification allows us to consider singl
component systems and hereby avoid the complications
to the alloy aspect. One-component quasicrystals have
been observed yet, but their possible existence is a que
worth investigating for its own sake@3#. Even for one-
component systems the problem is not simple because
question of thermodynamic stability requires one to comp
the Gibbs free energy for all the competing structures
this for many temperatures and pressures. To simplify
problem further we will evaluate these free energies h
within the van der Waals approximation of@4,5#. Such a
mean-field approximation is bound to introduce large qu
titative errors, but could well be sufficient to indicate tho
qualitative features of the interparticle potential that will f
vor the occurrence of a quasiperiodic structure in the s
tem’s phase diagram. Indeed, on all previous occasions
approximation has yielded qualitatively correct predictio
when compared to more sophisticated theories@4,5#. Even
so, the lack of periodicity of the quasicrystalline structur
requires the evaluation of slowly convergent sextuple lat
sums. In order to avoid also this more technical problem
will consider here only two-dimensional quasicrystals
which the lattice sums are more easily evaluated. Whe
two-dimensional quasicrystals have been observed@6#, we
think that conclusions similar to those reached here for
571063-651X/98/57~4!/4361~7!/$15.00
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two-dimensional systems can be obtained also in three
mensions, but at the expense of more elaborate calculat

This paper is organized as follows. In Sec. II we summ
rize the van der Waals approximation already put forth el
where @4# and generalize it to quasiperiodic structures.
Sec. III we describe the periodic and quasiperiodic structu
to be considered here. Section IV contains our choice for
interaction potential. The phase diagrams obtained in
way are discussed in Sec. V. Section VI contains our c
clusions.

II. VAN DER WAALS THEORY

The basic ingredients of the van der Waals~vdW! theory
are well known@4#. A simple fluid of spherical particules
interacting through a pair potentialV(r ) is considered:

V~r !5VHS~r !1VA~r !, ~2.1!

with V(r ) consisting of a hard-sphere~HS! repulsion be-
tween HSs of diameters,

VHS~r !5H `, r ,s

0, r>s,
~2.2!

and an attraction (A) of amplitudee.0 described by

VA~r !5H 0, x,1

2ef~x!, x>1,
~2.3!

where r is the distance between the pair of particles,x
5r /s, and the dimensionless functionf(x) will be specified
further in Sec. IV. The thermodynamic properties of a s
tem of N such particles enclosed in a volumeV at the equi-
librium temperatureT can then be described by the Helm
holtz free energyF5F(N,V,T). Within the present vdW
theory the latter is written@4#

F~N,V,T!5FHS~N,V,T!1FA
ex~N,V,T! ~2.4!

as the sum of the Helmholtz free energy (FHS) of a system
of HSs and the excess free energy (FA

ex) due to the attrac-
tions. For FHS a simple free-volume approximation i
adopted whereby the HSs behave as an ideal gas in a red
4361 © 1998 The American Physical Society
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4362 57R. ACHRAYAH AND M. BAUS
volume,aV, the ‘‘free’’ volume ~the vdW covolume corre-
sponds then to the ‘‘excluded volume’’V2aV); hence

FHS~N,V,T!5Fid~N,aV,T!, ~2.5!

with Fid(N,V,T)5NkBT$ lnrLd21% the ideal gas Helm-
holtz free energy. Herer5N/V is the number density,kB is
Boltzmann’s constant,L is the thermal de Broglie wave
length, andd is the space dimensionality. ForFA

ex the stan-
dard mean-field approximation is adopted@4#:

FA
ex~N,V,T!5

1

2E dr1E dr2r~r1!VA~r 12!r~r2!,

~2.6!

where r(r ) is the one particle density andr 125ur12r2u.
When switching to the reduced free energy per particlf
5F/eN, the reduced temperaturet5kBT/e, and the reduced
densityrsd or packing fractionh5rvd ~with vd the volume
of the hardd sphere!, the above can be summarized as

f ~h,t !5C~ t !1t lnh2t lna~h!2e~h! , ~2.7!

where C(t)5t$ ln(Ld/vd)21% is an immaterial constant
t lnh is the ideal gas contribution, lna(h) is the reduced
excess entropy of the hardd spheres, and2e(h) is the
reduced excess energy resulting from the attractions~2.6!.
The basic vdW structure of Eq.~2.7! is assumed here to hol
both for a disordered fluid (F) phase for whichr(r )[r and
for an ordered periodic or quasiperiodic structure for wh
r(r )[( j 51

N d(r2r j ), with $r j% characterizing the set of site
around which the particles are localized~see Sec. III!. For a
solid (S) the free-volume fractiona(h) of Eq. ~2.7! will be
approximated by its high-density cell-theory value@4#

aS~h!5F12S h

hcp
D 1/dGd

, ~2.8!

wherehcp is the value ofh at close packing of the structur
considered, whereas Eq.~2.6! gives rise to the following lat-
tice sum fore(h) of Eq. ~2.7!:

eS(h)55
1

2N (
i , j 51

N

f(xi j ) ~aperiodic!

1

2(
j 51

N

f(xj ) ~periodic) ,

~2.9!

wherer i j 5xi j s is the (d-dimensional! distance between sit
i and sitej of the structure described by$r j% andf(x) was
defined in Eq.~2.3!. When the structure is periodic th
double sum in Eq.~2.9! reduces to a single sum withr j
5xjs being the~d-dimensional! distance of sitej to an ar-
bitrary site chosen as the origin. For the fluid (F) phase Eq.
~2.6! yields instead

eF~h!54rv2E
1

`

dx x f~x! ~d52!, ~2.10!

wherev25 (p/4) s2. Finally, the free-volume fraction of the
fluid phaseaF(h) is approximated by its low-density viria
form, namely,
aF~h!512
h

h0
, ~2.11!

with the constanth0 chosen so as to yield a maximum flu
density@h,h0 anda(h).0] that interpolates between th
exact low-density behavioraF(h)5122d21h1O(h2) and
the physical upper limit at close packing@4#,

h05~212d1h̄cp!/25
1

4
1

p

4A3
.0.7034 ~d52!,

~2.12!

where h̄cp represents the close-packing density of a clo
packed structure@whereas in Eq.~2.8! hcp represents the
close-packing density of the structure at hand, i.e.,h̄cp
5maxhcp]. From Eq.~2.7! we can obtain the chemical po
tential m and pressurep as

m̄~h,t !5
]

]h
„h f ~h,t !…,

p̄~h,t !5h2
]

]h
„f ~h,t !…, ~2.13!

wherem̄5m/e andp̄5pvd /e are the corresponding reduce
quantities. To complete the thermodynamic description
can also obtain the reduced Gibbs free energy per par
ḡ5G/Ne by eliminating h in favor of p̄. To this end the
relation p̄5 p̄(h,t) is inverted ash5h( p̄,t) and ḡ( p̄,t) is
obtained fromm̄(h,t) as

ḡ~ p̄,t !5m̄„h~ p̄,t !,t…. ~2.14!

In this way the Helmholtz free energyf (h,t) of Eq. ~2.7!,
together with the pressurep̄(h,t) and the chemical potentia
m̄(h,t) of Eq. ~2.13! and the Gibbs free energyg( p̄,t) of Eq.
~2.14!, will provide a complete description of the phase b
havior of a system of particles interacting via the poten
~2.1!–~2.3! for both fluid phases@cf. Eqs.~2.10!–~2.12!# and
~periodic or aperiodic! solid phases@cf. Eqs.~2.8! and~2.9!#
in d dimensions~hered52). The underlying approximation
is the vdW approximation contained in Eq.~2.7! that ascribes
all the excess entropy of the (F or S) structures to the repul
sions, while the cohesion of these structures is ascribed to
excess energy provided by the attractions. Although a m
subtle interference between the repulsions and attract
than that described here can occur in real systems, the p
ics contained within the vdW approximation is very bas
and has never been in conflict with reality. Indeed, in
cases known to us the present vdW approximation
yielded qualitatively correct results@4,5#. It is in this spirit
that we use it here to investigate how the particular featu
of the attractions@f(x)# influence the thermodynamic sta
bility of the various periodic and quasiperiodic structur
introduced in the following section.
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III. PERIODIC AND QUASIPERIODIC STRUCTURES

The problem of thermodynamic stability is always one
relative stability. Indeed, out of two phases the phase w
the lowest Gibbs free energyg( p̄,t) is the thermodynami-
cally favored phase at the givenp̄ andt. It is thus essential to
clearly specify which phases have been allowed to comp
In what follows we will restrict ourselves to four differen
phases: the uniform fluid phase~either liquid or vapor! and
three types of crystalline phases, a compact periodic st
ture, a noncompact periodic structure, and a quasiperi
structure.

The periodic structures to be considered below consis
the triangular (St) lattice and the square (Ss) lattice. The
compact structure is the triangular lattice (hcp

St .0.907),

whereas the square lattice is a more open structure (hcp
Ss

50.7854).
The quasiperiodic (Sq) structure to be considered here is

two-dimensional dodecagonal quasicrystal that can be b
from squares and triangles. Of course, many different qu
periodic structures can be formulated or observed@1#, but we
think that the essential features of the energetic competi
between periodic and quasiperiodic structures are well il
trated by the choice made here, which involves the sa
building blocks~triangles and squares! for both the periodic
and quasiperiodic lattices. To this end we consider one of
quasilattices put forth in@7#. The points of the two-
dimensional plane with Cartesian coordinates (x,y) will be
represented by the complex numbersz5x1 iy . The triangu-
lar lattice with unit lattice spacing corresponds then to the
of complex numbers

V5$n11n2v%, ~3.1!

where theni ( i 51,2) are integers (ni50,61,62, . . . ) and
v5exp(2pi/3)5(211 iA3)/2. Let z15n11n2v and
z25n811n82v be two arbitrary points of Eq.~3.1! and con-
sider the set of points

Q5$z11z2z%5$n11n2v1n81z1n82vz% , ~3.2!

where z5exp(pi/6)5(A31 i )/2 and zv5exp(5pi/6)
5 (2A31 i )/2. The quasilattice (Sq) is then formed by
those pointsz5z11z2z of the set~3.2! that satisfy moreover
the six conditions

H ~Rez!
cos~p/12!

sin@~2n11!p/12!]

1~ Imz!
cos~p/12!

cos@~2n11!p/12# J
2

<1, ~3.3!

where n50,1,2,3,4,5. The corresponding quasilattice
shown in Fig. 1. The density at close packing of this str
ture can be computed along the lines of@8#. This has to be
done numerically and yieldshcp

Sq.0.785, a number very

close to that of the square lattice (hcp
Ss.0.7854).
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IV. THE INTERACTION POTENTIAL

To proceed we still have to specify the potential functi
f(x) of Eq. ~2.3!. To this end we will take advantage of th
observation made in@9# that the stable lattice structure
very sensitive to the relative position of the maximum
f(x) @or minimum ofVA(r ), cf. Eq. ~2.3!# and the position
of the nearest neighbors, as given for the various structu
considered here in Table I.

In order to easily locate the extrema off(x) we will write
it as a sum of Gaussians

f~x!5(
n

cnexp@2an
2~x2bn!2#, x5

r

s
, ~4.1!

where thecn5en /e are relative amplitudes, while the con
stantsan andbn fix, respectively, the ‘‘range’’ and the ‘‘cen
ter’’ of the nth Gaussian (n51,2, . . . ). Of course, our
choice of Gaussian potentials has no particular phys
meaning and similar results can be obtained by using dif
ent mathematical forms. Note that most of the investigatio
below involve in fact only a single Gaussian@in which case
we can setc151 because thecn in Eq. ~4.1! are relative

FIG. 1. Quasiperiodic planar lattice with dodecagonal symme
as obtained from Eqs.~3.2! and~3.3!. The dots represent the lattic
sites, while the lines exhibit the lattice structure as consisting o
tiling with regular triangles, squares, and trigonal hexagons@7#. At
close packing the density of this quasilattice is very close to tha
the square lattice with the same lattice spacing.

TABLE I. Number of sites (nj ) at a given relative distance
(xj /x1) from a central site for the periodic lattices considered h
(St for the triangular,Ss for the square lattice!. Note that the
second-nearest-neighbor distance of the compact lattice (St) ex-
ceeds that of the noncompact lattice (Ss) by a factorA3/2.

xj /x1 nj
St nj

Ss

1 6 4
A2 0 4
A3 6 0
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4364 57R. ACHRAYAH AND M. BAUS
amplitudes, the overall amplitude being set bye of Eq. ~2.3!#
with the exception of the study of the quasicrystals for wh
a more general potential of the type~4.1! with n51,2,3 will
be used. The various types of potentials, within the gen
family ~4.1!, to be used below are shown in Fig. 2.

V. PHASE DIAGRAMS

We now consider, in order of increasing complexity,
series of particular cases of Eq.~4.1!.

A. Hard- „d-… sphere transitions

Whenf(x)[0 the above vdW theory describes a syst
of hardd spheres. In such a system the only possible ph
transition is an order-disorder transition between a dis
dered fluid phase and an ordered crystal structure. This t
sition is seen to be monitored by the free-volume entropy
Eqs.~2.8! and~2.11!. From the equations of Sec. II it follow
@4# that the stable crystal structure is the one with the high

FIG. 2. Dimensionless attractionVA(r )/e[2f(x), of Eq. ~2.3!
versus the dimensionless distancex5r /s in units of the hard-
d-sphere diameters for the Gaussian potentials of Eq.~4.1!. ~a! A
single Gaussian withc151, a1520, and b151 ~full line! A2
~short-dashed line!. The former potential favors the compact lattic
(St), while the latter favors the noncompact lattice (Ss). ~b! A triple
Gaussian withc150.4, c2520.5, c350.7, a15a25a3520, b1

51, b251.2, andb35A2. This potential mimics an oscillating~in-
termetallic! potential and favors the quasilattice.
al

se
r-
n-
f

st

close-packing density~see Fig. 3!. This result is in agreemen
with the simulations of@10# and observations of@11#. The
position of this transition in, say, the temperature-dens
plane is an important feature of a phase diagram becau
provides a partition of this plane into two domains, one
the fluid and one for the solid phases. The present v
theory, although very approximate, yields a fair estimate
the position of the HS-freezing transition ofd spheres~see
Fig. 3!. Because the quasicrystalline structures are not c
pact structures they cannot be stabilized by the HS inte
tion alone, not in the present vdW theory but also not in
more sophisticated theories of@3,12,13#.

B. Isostructural transitions

As is well known@4#, the introduction of attractions be
tween the HSsf(x)Þ0 can lead to a transition betwee
phases of the same structure, i.e., isostructural transitions
it disordered or ordered structures. The interplay between
order-disorder transition and these isostructural transiti
has been the subject of much recent work, in particular w
respect to the isostructural solid-solid transition, which
present is still unobserved@14#. In order to convince our-
selves that the systems governed by potentials of the
~4.1! behave in a similar way we first consider the case

f~x!5exp@2a2~x21!2#, x>1, ~5.1!

where the parametera fixes the range of attractions relativ
to the range (s) of the HS repulsions. For long-ranged a
tractions~small a) the isostructural solid-solid transition i
metastable, whereas for short-ranged attractions~largea) the
isostructural fluid-fluid~or vapor-liquid! transition is meta-
stable. There exists, moreover, a range of intermediate-a val-
ues for which both isostructural transitions are metasta

FIG. 3. Reduced free energy per unit volume (f̄ 5vdbF/V)
versus the packing fraction (h5rvd) of a hard-d-sphere system as
obtained within the present vdW theory. The double-tangent c
struction, yielding the fluid (F) solid (S) coexistence densities, i
indicated by the dashed lines. Ford52 the competing phases ar
the fluid ~F!, the quasilattice (Sq), the square lattice (Ss), and the
triangular lattice (St). The resulting stableF-S transition is between
an F phase (hF.0.66) and the triangular lattice (hSt

.0.78). Note
that the free energies of the square and quasilattices cannot be
tinguished on this scale.
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57 4365THERMODYNAMIC STABILITY OF PERIODIC AND . . .
and the phase diagram is reduced to an order-disorder
sition. An example of the three types of phase diagram
given in Fig. 4 ~see @4,5# for the d53 case!. Both the
d52 andd53 systems, with either a Gaussian~5.1! or in-
verse power~see@4,5#! potential, thus behave in the sam

FIG. 4. Phase diagrams in the reduced-tempera
(t5kBT/e) –reduced-density (h5rv2) plane for d52 systems
with a single-Gaussian attraction of the type~5.1!. ~a! For long-
range attractions (a<3.38) there is a stable isostructural transiti
between two disordered fluid phases (F1 andF2) in addition to the
fluid-solid (St) transition. ~b! For intermediate-range attraction
(3.38<a<28) the only stable transition is between the disorde
fluid (F) and the ordered solid (St) phase.~c! For short-range at-
tractions (a>28) there is a stable isostructural transition betwe
two ordered solid phases (St1

andSt2
) in addition to the fluid-solid

transition.
n-
is

way. In particular, the thermodynamically stable solid pha
is always the compact periodic structure.

C. Structural transitions

In order to stabilize the noncompact lattices and indu
transitions between different structures, i.e., induce struct
transitions, we now shift the center (x51) of the Gaussian
attraction ~5.1! towards a new positionx5x0, with x0
5 x2 /x1 andxn being the position of thenth nearest neigh-
bor of the noncompact lattice~see Table I!:

f~x!5exp@2a2~x2x0!2#, x>1, ~5.2!

wherex05A2 for d52. Note that this is a simplified versio
of the argument put forth by Boyer in@9# for d53. Indeed,
the potential~5.2! is now more strongly binding at the pos
tion (x2) of the second neighbor of the square latti
(x2 /x15A2) than at the position of the second neighbor
the triangular lattice (x2 /x15A3). The shift@see Fig. 2~a!#
in the maximum of Eq.~5.2! as compared to Eq.~5.1! can
have a profound influence on the system’s phase diagram
low temperatures, where the energetic considerations do
nate, we now have structural phase transitions between
compact and noncompact crystal structures. We now a
have a local maximum in the fluid-compact crystal melti
line, a feature characteristic of short-ranged Gaussian po
tials @15#. An example of such a phase diagram is shown
Fig. 5.

D. Quasiperiodic structural transitions

The above procedure of displacement of the ‘‘center
attraction’’ relative to the structure to be stabilized, althou
sufficient for stabilizing noncompact periodic structures,
unable to stabilize the quasiperiodic structure. This is
cause the entropic contributions to the free energy of
noncompact and quasiperiodic structures are almost ide
cal, but the latter are still energetically unfavorable. W

re

d

n

FIG. 5. Complete phase diagram in the temperature-den
plane for ad52 system with Gaussian attractions corresponding
Eq. ~5.2! with a520 andx05A2 ~same notation as in Fig. 4!. Note
that there is a melting maximum in the low-density fluid–triangu
lattice coexistence, while the square lattice is stable only at
temperatures and within a small density window.
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4366 57R. ACHRAYAH AND M. BAUS
found, by trial and error, that in order to stabilize the qua
crystal phase one has to introduce a weak repulsion cent
between the first and second nearest neighbors of the c
peting periodic structure. We thus take

f~x!5c1exp@2a2~x21!2#1c2exp@2a2~x21.2!2#

1c3exp@2a2~x2A2!2#, ~5.3!

with c1,c3.0 andc2,0, in order to stabilize the quasicrys
tal relative to the triangular lattice. It is interesting to obser
that the corresponding potential mimics, to some extent@see
Fig. 2~b!#, the oscillations present in the intermetall
pseudopotentials prevailing in the alloys for which qua
crystals have been found experimentally@16#. It is thus pos-
sible that for a one-component system, such as consid
here, the thermodynamic stability of the quasicrystall
phase requires likewise a fine-tuning of the minima a
maxima of the interaction potential relative to the positio
of the first and second nearest neighbors of the compe
periodic structure. To establish the thermodynamic stab
of the quasicrystalline phase for Eq.~5.3! theoretically, how-
ever, is not an easy task even within this simple vdW theo
Indeed, because of the ‘‘oscillations’’ in the potential~5.3!
@see Fig. 2~b!# the Helmholtz free energies of the differe
phases exhibit several ‘‘loops’’ that render the construct
of double tangents and convex envelopes very tedious
this respect it should be stressed here that several studi
the literature have been limited to studying situations wh
the quasicrystalline phase corresponds to a local minimum
the Helmholtz free energy. This, however, is not a suffici
condition for thermodynamic stability. Indeed, we ha
found many instances@also for potentials much simpler tha
Eq. ~5.3!# where such local minima do exist but do not b
long to the convex envelope to the Helmholtz free energ
of all the phases involved. Under such circumstances
quasicrystal phase, although mechanically stable, is still t
modynamically metastable relative to the other phases.
establish unambiguously the thermodynamic stability of a
phase we found that in the present case it is much m
convenient to compare directly the Gibbs free energ
ḡ(p,t) of the different phases. A phase diagram obtained
this way for Eq.~5.3! is shown in Fig. 6.
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VI. CONCLUSIONS

The thermodynamic stability of two-dimensional on
component periodic and quasiperiodic crystals has been
vestigated within the extended vdW theory of@4#. The use of
such a simplified theory is justified here by the need to co
pute the Gibbs free energy in order to unambiguously loc
the thermodynamically~as opposed to mechanically! stable
phases. In particular, we find that quasiperiodic phases
stable only when the interaction potential has at least
negative minima separated by a positive maximum. It
found, moreover, that the minima and maxima of the int
action potential should be finely tuned with respect to
structure of the competing periodic crystals. This may e
plain why it is difficult to find stable quasicrystalline phas
in one-component systems and why oscillating intermeta
pseudopotentials are required for stabilizing the quasicrys
line alloys.
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FIG. 6. Low-temperature region of the temperature (t) density
(h) phase diagram of ad52 system described by the potential
Fig. 2~b! ~same notation as in Fig. 4!. The quasilattice phase i
stable only in a narrow density window.
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